numerical solution of multi-order fractional differential equations via the sinc collocation method
Authors
abstract
in this paper, the sinc collocation method is proposed for solving linear and nonlinear multi-order fractional differential equations based on the new definition of fractional derivative which is recently presented by khalil, r., al horani, m., yousef, a. and sababeh, m. in a new definition of fractional derivative, j. comput. appl. math. 264 (2014), 65{70. the properties of sinc functions are used to reduce the fractional differential equation to a system of algebraic equations. several numerical examples are provided to illustrate the accuracy and effectiveness of the presented method.
similar resources
A Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
full textNumerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method
In this paper, numerical solution of general Lane-Emden equation via collocation method based on Double Exponential DE transformation is considered. The method converts equation to the nonlinear Volterra integral equation. Numerical examples show the accuracy of the method. Also, some remarks with respect to run-time, computational cost and implementation are discussed.
full textNumerical solution of fractional partial differential equations using cubic B-spline wavelet collocation method
Physical processes with memory and hereditary properties can be best described by fractional differential equations based on the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional partial differential equations using cubi...
full textNumerical Solution of Troesch’s Problem by Sinc-Collocation Method
A new algorithm is presented for solving Troesch’s problem. The numerical scheme based on the sinc-collocation technique is deduced. The equation is reduced to systems of nonlinear algebraic equations. Some numerical experiments are made. Compared with the modified homotopy perturbation technique (MHP), the variational iteration method and the Adomian decomposition method. It is shown that the ...
full texta meshless method for numerical solution of fractional differential equations
in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...
full textStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of numerical analysis and optimizationجلد ۵، شماره ۱، صفحات ۳۷-۰
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023